Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change

نویسندگان

  • Hong-Lei Li
  • Wei Wang
  • Peter E. Mortimer
  • Rui-Qi Li
  • De-Zhu Li
  • Kevin D. Hyde
  • Jian-Chu Xu
  • Douglas E. Soltis
  • Zhi-Duan Chen
چکیده

Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis.

Two nitrogen-fixing root nodule symbioses between soil bacteria and higher plants have been described: the symbiosis between legume and rhizobia and actinorhizal symbioses between plants belonging to eight angiosperm families and the actinomycete Frankia. We have recently shown that the subtilisin-like Ser protease gene cg12 (isolated from the actinorhizal plant Casuarina glauca) is specificall...

متن کامل

Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences.

Actinomycetes from the genus Frankia induce nitrogen-fixing root nodules on actinorhizal plants in the "core rosid" clade of eudicots. Reported here are nine partial Frankia 16S rRNA gene sequences including the first from host plants of the rosaceous genera Cercocarpus and Chamaebatia, 24 partial glutamine synthetase (GSI; glnA) sequences from Frankia in nodules of 17 of the 23 actinorhizal ge...

متن کامل

The Independent Acquisition of Plant Root Nitrogen-Fixing Symbiosis in Fabids Recruited the Same Genetic Pathway for Nodule Organogenesis

Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positiv...

متن کامل

Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes.

In actinorhizal symbioses, filamentous nitrogen-fixing soil bacteria of the genus Frankia induce the formation of nodules on the roots of a diverse group of dicotyledonous plants representing trees or woody shrubs, with one exception, Datisca glomerata. In the nodules, Frankia fixes nitrogen and exports the products to the plant cytoplasm, while being supplied with carbon sources by the host. P...

متن کامل

Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America.

Symbiotic nitrogen (N)-fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N-fixation enzyme activity and physiology, comparatively little is known about how climate influences N-fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015